27,397 research outputs found

    Time-dependent analysis of the nuclear and Coulomb dissociation of 11Be

    Get PDF
    The breakup of 11Be on carbon and lead targets around 70 MeV/nucleon is investigated within a semiclassical framework. The role of the 5/2+ resonance is analyzed in both cases. It induces a narrow peak in the nuclear-induced breakup cross section, while its effect on Coulomb breakup is small. The nuclear interactions between the projectile and the target is responsible for the transition toward this resonant state. The influence of the parametrization of the 10Be-n potential that simulates 11Be is also addressed. The breakup calculation is found to be dependent on the potential choice. This leads us to question the reliability of this technique to extract spectroscopic factors.Comment: 9 pages, 6 figures, to be published in the Proceedings of the Second Argonne/MSU/JINA/INT RIA Workshop on Reaction Mechanisms for rare Isotope Beams (2005

    A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    Get PDF
    The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well

    Thermodynamic entropy production fluctuation in a two dimensional shear flow model

    Full text link
    We investigate fluctuations in the momentum flux across a surface perpendicular to the velocity gradient in a stationary shear flow maintained by either thermostated deterministic or by stochastic boundary conditions. In the deterministic system the Gallavotti-Cohen (GC)relation for the probability of large deviations, which holds for the phase space volume contraction giving the Gibbs ensemble entropy production, never seems to hold for the flux which gives the hydrodynamic entropy production. In the stochastic case the GC relation is found to hold for the total flux, as predicted by extensions of the GC theorem but not for the flux across part of the surface. The latter appear to satisfy a modified GC relation. Similar results are obtained for the heat flux in a steady state produced by stochastic boundaries at different temperatures.Comment: 9 postscript figure

    Friedel oscillations in disordered quantum wires: Influence of e-e interactions on the localization length

    Full text link
    The Friedel oscillations caused due to an impurity located at one edge of a disordered interacting quantum wire are calculated numerically. The electron density in the system's ground state is determined using the DMRG method, and the Friedel oscillations data is extracted using the density difference between the case in which the wire is coupled to an impurity and the case where the impurity is uncoupled. We show that the power law decay of the oscillations occurring for an interacting clean 1D samples described by Luttinger liquid theory, is multiplied by an exponential decay term due to the disorder. Scaling of the average Friedel oscillations by this exponential term collapses the disordered samples data on the clean results. We show that the length scale governing the exponential decay may be associated with the Anderson localization length and thus be used as a convenient way to determine the dependence of the localization length on disorder and interactions. The localization length decreases as a function of the interaction strength, in accordance with previous predictions.Comment: 7 pages, 7 figure

    Bohmian Mechanics and Quantum Information

    Full text link
    Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and the like in quantum theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the idea that information plays a special role in physics naturally emerges in a Bohmian universe.Comment: 25 pages, 2 figure

    The recognition heuristic : A decade of research

    Get PDF

    Are All Particles Identical?

    Full text link
    We consider the possibility that all particles in the world are fundamentally identical, i.e., belong to the same species. Different masses, charges, spins, flavors, or colors then merely correspond to different quantum states of the same particle, just as spin-up and spin-down do. The implications of this viewpoint can be best appreciated within Bohmian mechanics, a precise formulation of quantum mechanics with particle trajectories. The implementation of this viewpoint in such a theory leads to trajectories different from those of the usual formulation, and thus to a version of Bohmian mechanics that is inequivalent to, though arguably empirically indistinguishable from, the usual one. The mathematical core of this viewpoint is however rather independent of the detailed dynamical scheme Bohmian mechanics provides, and it amounts to the assertion that the configuration space for N particles, even N ``distinguishable particles,'' is the set of all N-point subsets of physical 3-space.Comment: 12 pages LaTeX, no figure

    Quantum Mechanics of Extended Objects

    Get PDF
    We propose a quantum mechanics of extended objects that accounts for the finite extent of a particle defined via its Compton wavelength. The Hilbert space representation theory of such a quantum mechanics is presented and this representation is used to demonstrate the quantization of spacetime. The quantum mechanics of extended objects is then applied to two paradigm examples, namely, the fuzzy (extended object) harmonic oscillator and the Yukawa potential. In the second example, we theoretically predict the phenomenological coupling constant of the ω\omega meson, which mediates the short range and repulsive nucleon force, as well as the repulsive core radius.Comment: RevTex, 24 pages, 1 eps and 5 ps figures, format change
    corecore